MAX MARKS: 100
MAX TIME: 3 HRS
Section: A, one mark each. Section: B, four marks each. Section: C, six marks each

1. Show that the binary operation $*$ defined by $\mathrm{a}^{*} \mathrm{~b}=\mathrm{ab}+1$ on Q is Commutative.
2. Solve: $\tan ^{-1} 2 \mathrm{x}+\tan ^{-1} 3 \mathrm{x}=\pi / 4$.
3. Find a matrix X such that $B-2 A+X=O$, where

$$
A=\left[\begin{array}{cc}
5 & 3 \\
-3 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
0 & -2 \\
3 & 1
\end{array}\right]
$$

4. Evaluate $\int \frac{d x}{x \cos ^{2}(1+\log x)}$.
5. If $|\vec{a}|=5 ;|\vec{b}|=13$ and $|\vec{a} \times \vec{b}|=25$, find $\vec{a} \cdot \vec{b}$
6. The Cartesian equation of a line AB is $\frac{2 x-1}{\sqrt{3}}=\frac{y+2}{2}=\frac{z-3}{3}$. Find the direction cosines of a line parallel to AB.

SECTION-B

7. If $\mathrm{f}: \mathrm{R}-\left\{\frac{7}{5}\right\} \rightarrow \mathrm{R}-\left\{\frac{3}{5}\right\}$ be defined as $\mathrm{f}(\mathrm{x})=\frac{3 \mathrm{x}+4}{5 \mathrm{x}-7}$ and $\mathrm{g}: \mathrm{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathrm{R}-\left\{\frac{7}{5}\right\}$ be defined as $\mathrm{g}(\mathrm{x})=\frac{7 \mathrm{x}+4}{5 \mathrm{x}-3}$. Show that $g \circ f=I_{A}$ and $\mathrm{f} \circ \mathrm{g}=\mathrm{I}_{\mathrm{B}}$ where $\mathrm{B}=\mathrm{R}-\left\{\frac{3}{5}\right\}$ and $\mathrm{A}=\mathrm{R}-\left\{\frac{7}{5}\right\}$.
8. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
a+b+2 c & a & b \\
c & b+c+2 a & b \\
c & a & c+a+2 b
\end{array}\right|=2(a+b+c)^{3}
$$

9. Prove that : $2 \tan ^{-1} \frac{1}{5}+\sec ^{-1} \frac{5 \sqrt{2}}{7}+2 \tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$.

OR
Solve for x : $\sin ^{-1}(1-\mathrm{x})-2 \sin ^{-1} \mathrm{x}=\frac{\pi}{2}$.
10. For what value of k is the following function continuous at $x=2$?

$$
f(x)=\left\{\begin{array}{c}
2 x+1 ; x<2 \\
k ; x=2 \\
3 x-1 ; x>2
\end{array}\right.
$$

11. If $x=2 \cos \theta-\cos 2 \theta$ and $y=2 \sin \theta-\sin 2 \theta$ find $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{2}$.

OR
If $y=\left[\log \left(x+\sqrt{1+x^{2}}\right)\right]^{2}$, show that $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d c}-2=0$.
12. Find the intervals in which the function $f(x)=\sin x-\cos x ; 0 \leq x \leq 2 \pi$
(i) is increasing (ii) is decreasing.
13. Evaluate $\int \frac{\mathrm{x}^{3} \sin \left(\tan ^{-1} \mathrm{x}^{4}\right)}{1+\mathrm{x}^{8}} \mathrm{dx}$.

OR

Prove that $\int_{0}^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x=\frac{\pi^{2}}{16}$
14. Solve the following differential equation: $\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x$.
15. Find the particular solution of the differential equation $\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0$, given that $y(1)=0$.
16.if $\vec{\alpha}=3 \vec{i}+4 \vec{j}+5 \vec{k}$ and $\vec{\beta}=2 \vec{i}+\vec{j}-4 \vec{k}$, then express $\vec{\beta}$ in the form $\vec{\beta}=\overrightarrow{\beta_{1}}+\overrightarrow{\beta_{2}}$, where $\overrightarrow{\beta_{1}}$ is parallel to $\vec{\alpha}$ and $\overrightarrow{\beta_{2}}$ is perpendicular to \vec{d}
Or
Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \vec{i}+2 \vec{j}+2 \vec{k}$

```
and \vec{b}=3\vec{i}+2j-2\vec{k}
```

17. Find the shortest distance between the lines $\frac{x-1}{2}=\frac{y-1}{-1}=\frac{z}{1}$ and $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+1}{2}$.
18. A box contains 12 bulbs of which 3 are defective. If 3 bulbs are drawn from the box at random, find the probability distribution of X , the number of defective bulbs drawn. Hence compute the mean of X.
19. solve the differential equation $\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$

SECTION-C

20.Given that $A=\left|\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right|$ and $B=\left|\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right|$ find $A B$. Hence using this product solve the system of equations: $x-y+z=4, x-2 y-2 z=9,2 x+y+3 z=1$
OR
Using elementary row transformation, find the inverse of the matrix $\left[\begin{array}{ccc}2 & -1 & 4 \\ 4 & 0 & 2 \\ 3 & -2 & 7\end{array}\right]$.
21. Show that the rectangle of maximum area that can be inscribed in a circle of radius r is a square of side $\sqrt{2} r$ unuts.
OR
Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $8 / 27$ of the volume of the sphere.
22. Evaluate: $\int \sqrt{\tan x} d x$.
23. Using the method of integration, find the area of the region bounded by the lines $2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$.
24. Find the image of the point $(1,2,3)$ in the plane $x+2 y+4 z=38$. Also find the perpendicular distance from the point to the plane.
25. a company sells two different products A and B . the two products are produced in a common production process which has a total capacity of 500 man hours . it takes 5 hours to produce a unit of A and 3 hours to produce a unit of B , the demand in the market shows that the maximum number of units of A that can sold is 70 and that of B is 125 . Profit on each unit of A
is 20 and that on B is 15 . How many units of A and B should be produced to maximum profit? Solve graphically?
26.A card from a pack of 52 cards is lost. From the remaining cards of the pack, 2 cards are drawn at random and are found to both clubs. Find the probability of the lost card being of club.
M.P.RAJU (m.sc; b.ED)
maths Lecturer,
JINDAL VIDYA MANDIR, VASIND, MUMBAI, CONTACT: 09657028844.

